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Feeding black holes: microquasars




Feeding black holes: Active Galactic Nuclei




Feeding black holes: Gamma-Ray Bursts










What 1s accretion?

Accretion 1s the process of matter falling into the potential well of a
gravitating object. The accretion of matter with no angular momentum
1s basically determined by the relation between the speed of sound a, in

the matter and the relative velocity v, between the accretor and the

rel

medium.

The accretion of matter with angular momentum can lead to the
formation of an accretion disk around the compact object.



Types of accretion

The are four basic regimes of accretion onto a black hole:

e Spherical symmetric accretion. It occurs when v, << ag and the accreting
matter does not have any significant angular momentum.

e Cylindrical accretion. The angular momentum of the medium remains
small but now v, > as.

e Disk accretion. The total angular momentum of matter is enough as to
form an accretion disk around the black hole.

e Two-stream accretion. Both a quasi-spherically symmetric inflow of matter
coexists with disk accretion (e.g. Narayan & Yi 1994).




The hydrodynamic description of accretion (or any other physical
process) 1s valid if the mean free path of the particles in the
medium 1s shorter than the typical size scale of the system. In the
case of accretion the self-gravitation of the fluid 1s usually
negligible, so the characteristic length scale 1s, as we shall see, the

gravitational capture radius or accretion radius, RGor R, ..

This quantity 1s roughly equal to the distance to the accretor at
which the kinetic energy of an element of matter 1s of the order of
1ts gravitational energy,




Basic equations

In the absence of radiation, the equations that fully describe the
accretion process are:




Gravitational capture

A key parameter in the study of accretion flows is the mass accretion

rate dM/dt, defined as the mass per unit time captured by the
gravitating center.

M = 0GP Urel

This cross section depends strongly on the nature of the gas. If the gas is

made of collisionless non-relativistic particles, the gravitational capture
cross section in a Schwarzschild black hole 1s

OG(collisionless) =— 4 (_




Gravitational capture

)
OG(fluid) ~ T R G

2
0 . - RS h
G(collisionless) o C w) < 1.

Under typical conditions in the interstellar medium the capture cross
section for accretion of a fluid 1s about a million times that for the
accretion of collisionless particles.



Spherically symmetric accretion

Equation of state:

, , P GM
From the Euler equation: ‘ — — T constant = €.
| )

The continuity equation can written as:

M = 47?]?2/)1.' = constant,

where we have considered accretion over a sphere of radius R.



The boundary conditions at infinity nplv:

€ =

The speed of sound 1s

Ther.

and

M :47tr2vp,




There is a critical point at & = Rs which the gas velocity overcomes the
speed of the sound. At R << Ry the matter is practically in a state of free fall
toward the black hole. This 1s because of the flow becomes supersonic and then
the underlving lavers do not do not affect the entrained matter. Then. we can
write:




It the effect of radiation 1S to be taken into account, then we must add the
second law of thermodynamics. The variation of the internal energy per unit
mass of the gas is

de=dQ — PdV.

where V = 1/p is the specific volume and d Q is the heat exchanged per unit mass.

For a monoatomic gas E = ik T
2

Energy associated with one atom

3k dT
2pumy, dt -




Using dr = vdt, we can obtain the equation for the temperature
distribution 1n a steady-state spherically symmetric accretion flow:

dT T

2G6M r T 3k dr

B I's 1/21/2 2ump dQ
dr  r

— ___affp(rs)(

If there are no additional radiation losses besides free-free radiation

where we have assumed that at R = R, the temperature 1s 7.



The previous equation shows that under such conditions the

temperature decreases as the flow approaches the black hole. A
flow that behaves in this way 1s called a cooling flow.

The radial free fall time is

whereas the cooling time for Bremsstrahlung losses (d Q/dT « T12p) s’

_3kT/2um, T

Icool,Br ~ — XU

agT1/2p P

Comparing both timescales we see that the relative role of cooling decreases as the
black hole is approached.




Eddington luminosity

Close to the black hole there could be sources of radiation, for
example 1f a magnetic ficld and dissipation of angular momentum
are 1nvolved. The outgoing radiation will pass through the
accretion flow and may influence its dynamics. Each particle
experiences a force




Eddington luminosity

Then, if the luminosity equals

drGMm pc
Lpga=——"—

o

the gravitational force and the radiation force are balanced and spherical accretion is
stopped. This critical luminosity is called the Eddington luminosity of the accreting
source. In the case of Thomson scattering (o = o) it takes the value

M
Lggq ~ 1.3 x 1038(—> ergs .
Mg




Eddington luminosity

Associated with the critical luminosity we can define the Eddington accretion rate
as

. L M
Mgyqq = # ~0.2x 1078 (—)M@ yl'_l.
C M@

The Eddington temperature Tgqq 1s the characteristic temperature of a blackbody of
radius equal to the Schwarzschild radius that radiates at L = Lgyq,

I 1/4 Mo\ /A
Trgq = ( Edd2 ) ~ 6.6 X 107(M—) K.
®
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Another way to inhibit spherical accretion is the production of winds or
particle ejection in the inner accreting regions. If Lej is the power carried away
by the ejected particles and ve 1s their velocity. the exerted pressure will be:

Leg;

47"]?2‘1'63' .

Py =

If the central source ejects particles belore the onset of the spherical accre
tion, pressures must be equated at the gravitational capture radius to find the
critical Tnminosity in ejected particles:

" 2 Maw

L

2 . 2
4rr accr vej Tr accr

From here we get:

Cl'lt ~ y .
Lej ~ 4Maw veJ .

Using the fact that a fraction 7 of the aceretion power is released as radiation,

L =nMec,

we obtain
1.Cmit o 4£ oo Uej

It can be seen that a weak wind can stop the the spherical accretion.




Cylindrical accretion

The problem of cylindrical accretion i1s the problem of the
determination of the gas accretion onto a moving gravitating
center. Unlike the case of spherical accretion, the problem is
quite complex and there are not analytical solutions of it.

In cylindrical accretion, the velocity of the compact object with
respect to the medium v. 1s not negligible.

The symmetry axis of the problem 1s determined by the line of
motion of the object. The stream lines of the fluid then are
hyperbolae centered on this axis. As individual particles move,
the angular momentum 1s conserved relative to the accreting
object.
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The particles to be captured by the compact object are those for which the
velocity 1s lower than the parabolic velocity:

-~ (2(:31)
U =~ .
= Rcol

The conservation ol energy unplies:

1, . .-
T(l‘2||+(‘i)_

R col

Only particles satistying v, <v, will be captured. The gravitational capture
cross section 1s determined by the capture radius:

2GM

G — 2 ,,2 .
ag + Urel




If we work 1n the fluid approximation, the supersonic motion of
the compact object will lead to the formation of a bow shock




A moving body through a gaseous medium with produce density perturba-
tions. If these perturbations are small, we can write:

i . op
P = Poo+0p, 0= —.
Poo

In addition, we assume that the gravitational center is point-like and moves at
Uso. The accretion rate is:

M = &1 7rR2Gvoo Poo s

wheres &; is a dimensionless parameter of the order of unity.




Perturbing and linearizing:

—ETREV566(R — voot),

V256 = —47G(prot + 0poso)-




The Jeans wavelength 1s defined such that any small sinusoidal
density disturbance with a wavelength exceeding 2 m /k will be
gravitationally unstable. The Jeans critical mass 1s usually defined
as the density times the cubic of the length. Higher masses than the
Jeans mass start to condense gravitationally.




Using the Jeans wavelength:

We get:

i i 0 .
026 + A’ga.goé = —AnGpor + flﬂRé'vooEé(R — VUsol).

To simplify, we center the center the coordinate system in the moving object
and neglect self-gravity of the gas (k;):

(a? —v% )V?5 = 4rGMI(R)

o0




The solution is (Lipunov 1992):

If we introduce the Mach number My = v, /s, We see
that there is a singularity at the surface of the cone described by:

1
My

sin g, =




The solution 1s not valid close to the cone, which implies that
a shock wave 1s formed, with a form of a cone with opening
angle 0., . This shock 1s called a “bow shock™.

NOT TO SCALE




Fig. 4.3 Sketch of the geometry of an axisymmetric accretion flow in the Bondi-Hoyle model. The
arrows indicate the direction of the flow.




A force due to dynamical friction opposes to the motion of the compact
object, slowing it down. Such a force is the result that the density in the back-
ground matter in the wake is higher than in front of the moving center. The

dynamic friction force is:
2
Fyr = TRG PooVoo-

Numerical simulations show that the accretion flow pattern i1s
complicated and dependent on the efficiency of the gas cooling
mechanism. The simulations also show the formation of a frontal
shock at a distance ~ R,. This region 1s prone to suffer Rayleigh-

Taylor nstabilities.
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The temperature in the wake of the the shock is (Lang 1999):

2

My v 2
Ty = 22 ~25%x10° ([ ———>—) K,
h 5 X (107 cm S_l) |

where k is the Boltzmann’s constant.

A realistic study of the accretion regimes onto moving objects requires ex-
tensive numerical simulations.







Black hole in a massive binary system
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Disk accretion




Disk accretion

In most realistic astrophysical situations the matter captured by
a gravitational field will have a total non-zero angular
momentum. The accretion of matter with angular momentum
onto a black hole leads to the formation of an accretion disk.
The main difficulty in the formulation of a consistent theory of
accretion disks lies in the lack of knowledge on the nature of
turbulence 1in the disk and, therefore, in the estimate of the
dynamic viscosity.






Disk accretion: thin disks

We shall start with the following simplifying assumptions:

1) the disk 1s thin, 1.e. 1ts characteristic scale in the z-axis 1s H << R,
2) the matter in the disk 1s in hydrostatic equilibrium in the z-axis,
3) self-gravitation of the disk can be neglected.

Condition 2) can be expressed as:

1dP _ GM _

R

pdz  R3



Disk accretion

IT a, 18 the sound speed, H = Az is the half-thickness of the disk,
and P = pa 2, we can re-write:




Disk accretion

Notice that since the particles move into Keplerian orbits there 1s no
pressure gradient along R. The transport of angular momentum along the
disk 1s associated with the moment of viscous forces:

MR _or @y g2

dR dR

Basic Shapes and Their Moment of Inertl

0.0
@

ZIZR Im(RR)I R2




Disk accretion

Transport of angular momentum

The parameter 7 is the dynamic viscosity averaged over the z-coordinate. Notice
that for a rigid body dwk/0R = 0 and the viscous stress vanishes.




The viscosity of isotropic turbulence is (Landau & Lifshitz 2002): n =
(1/3)puvily, where vy and [y are the characteristic velocity and scale of the tur-
bulence, respectively. Shakura (1972) introduced the following expression to
characterize the viscous fluid:

"l?tlt — Gﬁ(l,-SH ]

where « is the viscosity parameter. Since vy < as and [y < H, then a < 1.



Disk accretion

where Ry is the radius of the inner edge of the disk and W,.4(in) is the component
of the tensor of viscous stress evaluated at R = R4. As we have seen before, for
a Schwarzschild black hole the last stable orbit is at Ry = 3Rg.hw. For this last
orbit, we can take:

Wye(in) = 0.

The continuity equation can be written as:

M = 27p(2H)Rug.

with v the radial velocity of the matter in the accretion disk.




Disk accretion

Far from the inner edge we have:

M
Wy = —%wK ~ 3nHwg = aPH.

From this equation




Disk accretion

The transport of angular momentum in the disk results in the generation
of heat. We can express the heat produced per unit surface area of the disk per
unit of time on each side as:

1 dw 3 GM

T _ W — —wW. o —
Q = 2” rd)RdR = 4u,ﬂ ro- WK = R3

This energy is carried away in the form of thermal radiation:

Q™ = ospT™.

In the steady state O = Q. It O+ > O—,
the disk becomes thermally unstable.



Disk accretion: basic equations

2 :
- ) (Kepler’s law).

vrR (continuity equation).

1/2 I
%d> ] + ‘“Iﬁ.-;'(f)(lll)

5, “2 p . ege .
P = % (hydrostatic equilibrium).

5. W,y = aPH (viscous tensor).

H
. QF = —2W,4R% (energy release). 2(R)=2 /O p(R,z)dz

- 2 dR
- T4 (1 o
. = ogp1™ (losses by radiation).
Q SB ( . ) 3 ~ 2Hp
. P= %/)Ru('f'e +15) + § (equation of state, with e tne energy aensity).

1.8x10—25

9. olem?] = o1 + og ~ 6.65 x 107%°n + T3

(absorption cross section).




Disk accretion: basic assumptions

. The gravitational field is determined by a black hole, and the self-
gravity of the disk is ignored.

. The disk lies in the equatorial plane of the hole.
. The disk is steady.
. The disk is axisymmetric.

. The disk is geometrically thin in the sense that H/r <« 1.

. Rotational motion is dominant (Keplerian rotation); |v,| < v,,.

. Hydrostatic balance holds in the vertical direction.
. The disk is optically thick in the vertical direction.

. A specialized viscous law is adopted; the ro-component of the vis-
cous stress tensor is proportional to the pressure. Other compo-
nents are neglected.

. Global magnetic fields are ignored.




Disk accretion: regions

This 1s a svstem of 9 equations with 9 functions of R as solution. The
solutions where found by Shakura & Sunvaev (1973). For fixed values of M and
M. the disk can be into three different regions:

e An outer region (large R) where the gas pressure dominates over radiation
pressure and opacity 1s controlled by Iree-free absroption.

e A middle region (smaller i) where the gas pressure dominates over radia
tion pressure but the opacity i1s due to electron scattering.

e An inner region (very small R) where radiation pressure dominates over
eas pressure and the opacity 1s also due to electron scattering.




Disk accretion: structure
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Disk accretion: luminosity

Luminosity and spectrum of standard accretion disks

The energy carried with the radiation released in a ring of thickness dR of the
accretion disk is:

dL(R) = 2Q*2rRdR,

where the initial factor 2 is due to the two faces of the disk. This equation can

be written as:
3. d GM R4
dL(R) = \ R (1 “\ 7 ) dR.




Disk accretion: luminosity

The power dL(R) corresponds to the work done by the gravitational field.
Approximately half of this power is transformed into kinetic energy of the matter
moving along ¢ and the other half is transformed into heat:

. d
ALy = M— (—

dr

dR = =M

M —5-dR

GM) 1 . GM

2R




Disk accretion: luminosity

 dL(R) MGM
Ld_/Rd ar = op

Adopting R; = 3Rq,, and dividing by (dM/dt)c? we get
the efficiency of energy release in the disk accretion
process: ~ 8 %. For a Kerr black hole, where R = R, the

efficiency reaches ~ 42 %.



Disk accretion: luminosity

3 MGM

+ _—
@ 8t R3

for R >> R,. Through the energy energy balance equation
QOF = O = oggl? we can obtain the temperature distribution
along the radial direction 1n the disk:




Disk accretion: luminosity

The total spectrum is the result of the superposition of the blackbody emis-
sion from cach ring of temperature T(R):

Rout‘
I, =2n / B,[T(R)|RdR.
Rq

with




Disk accretion: luminosity

Rout. > > Rd

Iz/ = 167 Rd <A1d> Ilvvl/1/3.

2 h

The typical temperature can be obtained from:

1 .. GM
~M — WrR25ep T
5 Rq d9SB

N vraar 4
—Z : ) 13 .
47?]?'(1 0SB

This yields temperatures of ~ 107 K for stellar mass black holes in binary systems

(M ~ 101 o s71).

The result is:




Disk accretion: luminosity




Disk accretion: luminosity
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The need for new solutions

Cygnus X-1

g "2 4'—1
E F; (erg cm™? s71)

Emission above what is expected from a
thin disk with T~107 K (~ a few keV).
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E (keV)




Disk accretion: hot accretion flows and ADAF

Shapiro, Lightman, and Eardly (1976) found a self-consistent
solution for the hydrodynamic equations of an accreting flow onto a
compact object, including both rotation and viscosity. This solution
has the characteristic that the plasma has two-temperatures.

The 1on temperature (7 ~ 1012 K) 1s much higher than the electron
temperature (7' ~ 10% K). The plasma 1is optically thin and the

radiation has a power-law spectrum in X-rays, consistent with what
1s observed 1n sources like Cygnus X-1. However, the solution is
thermally unstable.



Disk accretion: ADAF

Thermally stable solutions were found by Begelman and Meier
(1982) in a super-Eddington accretion regime (the disk results
optically thick) and by Ichimaru (1977) and Narayan and Yi
(1994a.b, 1995a,b). The latter solution corresponds to sub-
Eddington accretion of a low-density gas.

The energy released by viscosity is stored in the plasma, which i1s
advected and swallowed by the black hole. The plasma 1is optically
thin and with two temperatures. This type of solution describes
what 1s known as advection-dominated accretion flows (ADAFs).



Disk accretion: ADAF

In general, we can summarize the characteristics of an ADAF as follows:

. the radial velocity is a considerable fraction of the free-fall velocity so accretion
1s fast,

. the rotation velocity is sub-Keplerian,
. the gas is expected to be hot since it has no time to cool before being accreted,
. the typical height scale is H ~ as/$§2x ~ r—the flow is then quasi-spherical.




Disk accretion: ADAF

The different accretion regimes in an ADAF are determined by the param-
eter f defined as:

+_ —
f:Q Q :Qadv

Qt T QY

i.e. as the ratio between the advected energy and the energy released through
viscosity. Different values of f correspond to different types of accretion.




Disk accretion: ADAF

e f < 1: in this case QT ~ Q™ > .4y and all the energy released by viscos-
ity is radiated. This regime corresponds to thin disks and two-temperature
solutions such as that of Shapiro et al. (1976).

e f =~ 1: here Q.3, ~ QT > @, the cooling is negligible and the flow is
ADAF-like.

e |f| > 1: corresponds to —Q.qy &~ Q~ > Q7. The situation is like in the
Bondi-Hoyle regime.




Disk accretion: ADAF

The equations that describe an ADAF are the usual hydrodynamic equations
for a viscous accretion flow. It is convenient now to work in spherical coordi-

nates (r, 6, ¢). We shall assume that the system has azimuthal symmetry, so that
d/d¢ = 0, and has reached the steady state.




If we consider spherical coordinates (R, 6, &) the three components of the
Euler equation and and the energy conservation can be written as:

ovp V2 GMp _op 0 l> Ovp 2 (21-3 N ()-I‘Rﬂ
) v i = — — — 17 — =D
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Disk accretion: ADAF

Narayan and Yi (1995a) found the following self-similar solutions for these
equations:

. . 1/2
vp = RO (R)v (0), .QK(R):( ‘ ) .

We also need an equation of state




Disk accretion: ADAF

Angular velocity Q, radial velocity v, mass density p, and speed of sound cs at fixed radius as
a function of the polar angle 6, for a = 0.1 and several values of the parameter ¢. From
Narayan et al. (1998b).



Disk accretion: 2T ADAF

e The total pressure has contributions from both the gas and the magnetic
field:
P = Pg + Pm-

The magnetic pressure is:

BQ
'

Pm —

and the gas pressure, in the case of an ideal gas of density n and tempera-
ture 717,

pe = nkT.

The firsthypothesis is that the magnetic pressure is a fixed fraction of the
gas Pressure:

pm = (1 = 3)p, pg = Bp-

The value 3 = 0.5 corresponds to strict equipartition.



Disk accretion: 2-T ADAF

e A second hypothesis is that the temperature of ions and temperature of
clectrons are different. Then, the gas pressure becoms:

pe = Bpct = —L— k1, + —L k1,

[T [LeTNEH

where mp is the hydrogen mass and p; o the molecular weight of ions and
clectrons, respectively.




Disk accretion: 2-T ADAF

e There is a preferential heating of ions. Because of the large difference is
mass, it is assumed that the energy released by viscosity is transferred
to ions and just a small fraction 6 < 1 goes to clectrons. Usunally, it is
assumed § ~ 1073 ~ 712»6/7)1‘.},. In such a case, the result will be 7; > T..
where typically 7; ~ 1012 K and 7. ~ 10Y K. Even if both types of particles

receive the same amount of energy, electrons will cool more efficiently,
leading to 1; > T, in any case.

ADAF models assume that there is no thermal coupling between iones and
clectrons, and the only relevant interaction is Coulombian.




Disk accretion: 2-T ADAF

e The resulting spectrum of the ADAF will result from the operation of the
different cooling mechanisms. For electrons the most relevant mechanisms
arc synchrotron radiation, Bremsstrahlung, and inverse Compton scatter-
ing:

Qe_ - ngl + Qs_ynchr + QI_C‘

Photons produced by Bremsstrahlung and synchrotron process can be up-
scattered by electrons, in addition to those coming from external fields.
Then, Qo can be written as:

QI—C‘ — QI—C,BI‘ + QI_C,synchr + QI_C,ext'

In the steady state the energy gained by the ions through the viscous heating
must be equal to the energy transferred to the electrons plus the advected energy:

Q+ — Qadv + Qie — fQ+ + Q‘ie'

This assumes that the 1ons have no radiative losses.




Disk accretion: 2-T ADAF
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Figure 32.  Left: ADAF spectra from a 10 M., black hole and different

accretion rates. Right: Thin disk spectra for the same accretion rates
and black hole.







Generic SED of an ADAF




Non-thermal contributions to the Corona .
--=+= 3=100, convection

radiative spectrum in a corona a=100, diffusion
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Non-thermal contributions
to the radiative spectrum
in a corona model with a
relativistic proton-to-
electron power ratio of
100. From Romero et al.

(2010).
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Radiatively inefficient accretion flows (RIAFs)

m— i =0.1, fiy=3
— 1o = 1072, £y =30
w— oy = 1073, =100

m— =104

1011 1014 s 1‘017
Frequency [Hz]

Thermal emission from the accretion flow around a supermassive black hole of mass
Mgu = 108Mso1  for four different models (from Gutierrez, Vieyro & Romero 2021)



Radiatively inefficient accretion flows (RIAFs)

=== RIAF (th)
= SSD
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Spectral energy distribution of a supermassive RIAF with non-thermal particles.
Accretion rate: dm/dt oue = 10-2(from Gutierrez, Vieyro & Romero 2021)



Accretion rate/BH mass
(disk luminosity/Edd. luminosity)

Three Accretion Modes

Shakura & Sunyaev 73; Ichimaru 77; Abramowicz+ 88; Narayan & Yi 94;

Black hole

Super-Edd. JK |

......................................................Eddington limit

Standard disk ® Cold/Dense Optically-thick &

Optically-thick
& geometrically-thick

geometrically-thin

® Hot/ Optically-thin
Jeeiel | & geometrically-thick

Accretion disks are divided into three modes by depending on the
accretion rate (disk luminosity)




Three Accretion Modes

Spectra (schematic)

Different spectral states % (b) (©)
imply the existence of 9
different accretion modes
frequency

Mass accretion rate
(disk luminosity)
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Ohsuga 2018
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BH mass vs Accretion rate

Slim disk (supre-Edd. disk)
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BH mass vs Accretion rate
BZ jet

Radiatively-driven jet
ULX NLSI
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Photon trapping in super critical accretion

Radiative flux
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Condition for photon-trapping in the disk:

H/(c/37) 2 —r/v;
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Super accreting disks
The critical radius:

GM
Vertical Force = — R3Z o+ 1F ,

F=0T*=3GMM/8nr?) Fukue 2004
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©O) M crit

. L M -
M. C—f =1.39 x 1017M_@ gs

where i1 = Mippu/Mei and ro =2GM /2.



Mineshige and Ohsuga

Super accreting disks
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Super accreting disks Fukue 2009

M input forr > re
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inside r¢;. Thus, the wind mass-loss rate via radiatively-driven
winds must be

Mwind = Minput - M(r)a

M(r)= r

where Minput is the accretion rate at the outer edge of the disk
(and at the critical radius).

The total wind mass-loss rate My,;q is evaluated as

. . 7
Mwind - Minput <1 - ;n) i

Fer
47rréaT04 L 2
i 0

where é (= E/Lg) is the normalized energy-outflow rate
(luminosity) in the comoving frame.
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Fig. 2. Temperature distribution at the apparent photosphere as
a function of radius r. The dashed curves are the temperatures in the
comoving frame, while the solid ones are those in the fixed frame of the
observer at infinity. The mass-outflow rate, 1, is set to be 1000. The
wind velocity, f,1is 0.1 to 0.9 in steps of 0.1 from bottom to top curves.
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Super winds
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Fig. 4. Shape of the critical accretion disk. The inclination angle,
i, is 0°. The mass-accretion rate is 7inpus = 1000, and therefore,
rer = 20007g. The axes are in units of rg.

10261 1
> 10% |
DQIO
- 10 .
oY)
=l i .
1022 1

11017 1I018 1019

log v

1015 1I016

Fig.5. Spectra of a naked supercritical disk. The central mass is
m = 10, and the mass-accretion rate is 71, put = 1000. The inclination
angles are 0° to 80° in steps of 10° from top to bottom.

Fukue 2009




Super winds
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Fig. 3. Spectra of black hole winds. The dashed curves are the
comoving spectra, while the solid ones are the observed ones. The
mass-outflow rate, 71, is set to be 1000. The wind velocity, B, is 0.1,
0.5, and 0.9 from left to right. The chain-dotted curve means a black-
body at ~ 107 K.
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Fig. 6. Shape of the apparent photosphere of the black-hole wind with
the supercritical disk. The inclination angle, 7, is 0° and the wind
velocity, B, is (a) 0.1, (b) 0.5, and (c) 0.9. The mass-outflow rate, 71, is
set to be 1000. The axes are in units of rg.




Super-Edd. disk & Jets

t=3736.t,
Gas Density 80|

Radiation
Energy density

60

407

20




Apparent Luminosity
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The radiative flux is mildly collimated
since the disk is optically and
geometrically thick.

Thus observed luminosity is very
sensitive to the observer’s viewing angle.

The apparent luminosity becomes highly
super-Eddington for the face-on
observers (22Ledd for <20° in the case

of Mdot~100Leq4d/c?, Laisk~3LEdd).

Large luminosity of ULXs
(>103°-4%erg/s) can be explained
for the face-on case.




Super-Edd. disk
& radiatively-driven jets

Mass density

—m Strong radiation pressure

supports the thick disk and
generates the jets.

Photons mainly escape through
the region around the rotation
axis, so that the radiation
pressure cannot prevent the

Accretion accreting motion.

Flow
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Wind Outflows from Super-Edd. Disks

Takeuchi, Ohsuga, Mineshige 2013
10.00 s, 34.80 orbit

Super-Eddington disk+ Jet

Clumpyﬂ
Outflow * rf)ﬁ
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Time-dependent, Clumpy outflow
with wide angle




Clumpy outflows (3D)
Kobayash|+ |8

5.000=-07
Max: 0.020¢1
Min: 1.000¢-10

Torn sheet like structure.
The size is ~100Rs.
Outflow velocity is ~0. 1 c.
Rotation veloc1ty is 30% of Viep.
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